Chapter 8 Numerical Solutions of Nonlinear Systems of Equations

Numerical Solutions of Nonlinear Systems of Equations

Newton method:

The iteration mapping function, $G(\mathbf{x}) = \mathbf{x} - J(\mathbf{x})^{-1} \mathbf{F}(\mathbf{x})$, where

$$J(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_n} \\ \frac{\partial f_2(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_2(\mathbf{x})}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial f_n(\mathbf{x})}{\partial x_1} & \frac{\partial f_n(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_n(\mathbf{x})}{\partial x_n} \end{bmatrix}.$$

The solution of \mathbf{x} can be approximated by the iteration

$$\mathbf{x}^{(k)} = \mathbf{G}(\mathbf{x}^{(k-1)}) = \mathbf{x}^{(k-1)} - J(\mathbf{x}^{(k-1)})^{-1} \mathbf{F}(\mathbf{x}^{(k-1)}).$$

Quasi-Newton method:

The secant method uses the approximation

$$f'(x_1) \approx \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

as a replacement for $f'(x_1)$ in Newton's method. For nonlinear systems, $\mathbf{x}^{(1)} - \mathbf{x}^{(0)}$ is a vector, and the corresponding quotient is undefined. However, the method proceeds similarly in that we replace the matrix $J(\mathbf{x}^{(1)})$ in Newton's method by a matrix A_1 with the property that

$$A_{1}(\mathbf{x}^{(1)} - \mathbf{x}^{(0)}) = \mathbf{F}(\mathbf{x}^{(1)}) - \mathbf{F}(\mathbf{x}^{(0)}). \tag{1}$$

This equation does not define a unique matrix, because it does not describe how A_1 operates on vectors orthogonal to $\mathbf{x}^{(1)} - \mathbf{x}^{(0)}$. Since no information is available about the change in \mathbf{F} in a direction orthogonal to $\mathbf{x}^{(1)} - \mathbf{x}^{(0)}$, we require additionally of A_1 that

$$A_1 \mathbf{z} = J(\mathbf{x}^{(0)}) \mathbf{z}$$
, whenever $(\mathbf{x}^{(1)} - \mathbf{x}^{(0)})^t \mathbf{z} = 0$. (2)

This condition specifies that any vector orthogonal to $\mathbf{x}^{(1)} - \mathbf{x}^{(0)}$ is unaffected by the update from $J(\mathbf{x}^{(0)})$, which was used to compute $\mathbf{x}^{(1)}$, to A_1 , which is used in the determination of $\mathbf{x}^{(2)}$.

Conditions (1) and (2) uniquely define A_1 , as

$$A_{1} = J(\mathbf{x}^{(0)}) + \frac{[\mathbf{F}(\mathbf{x}^{(1)}) - \mathbf{F}(\mathbf{x}^{(0)}) - J(\mathbf{x}^{(0)})(\mathbf{x}^{(1)} - \mathbf{x}^{(0)})](\mathbf{x}^{(1)} - \mathbf{x}^{(0)})^{t}}{\|\mathbf{x}^{(1)} - \mathbf{x}^{(0)}\|_{2}^{2}}.$$

It is the matrix that is used in place of $J(\mathbf{x}^{(1)})$ to determine $\mathbf{x}^{(2)}$:

$$\mathbf{x}^{(2)} = \mathbf{x}^{(1)} - A_1^{-1} \mathbf{F}(\mathbf{x}^{(1)}).$$

This method is then repeated to determine $\mathbf{x}^{(3)}$, using A_1 in place of $A_0 \equiv J(\mathbf{x}^{(0)})$ and with $\mathbf{x}^{(2)}$ and $\mathbf{x}^{(1)}$ in place of $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(0)}$. In general, once $\mathbf{x}^{(i)}$ has been determined, $\mathbf{x}^{(i+1)}$ is computed by

$$A_{i} = A_{i-1} + \frac{\mathbf{y}_{i} - A_{i-1}\mathbf{s}_{i}}{\|\mathbf{s}_{i}\|_{2}^{2}}\mathbf{s}_{i}^{t},$$

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - A_i^{-1} \mathbf{F}(\mathbf{x}^{(i)}),$$

where the notation $\mathbf{y}_i = \mathbf{F}(\mathbf{x}^{(i)}) - \mathbf{F}(\mathbf{x}^{(i-1)})$ and $\mathbf{s}_i = \mathbf{x}^{(i)} - \mathbf{x}^{(i-1)}$.

Steepest Descent:

The method of Steepest Descent determines a local minimum for a multivariable function of the form $g: \mathbf{R}^n \to \mathbf{R}$. The connection between the minimization of a function from \mathbf{R}^n to \mathbf{R} and the solution of a system of nonlinear equations is due to the fact that a system of the form

$$f_1(x_1, x_2, ..., x_n) = 0,$$

$$f_2(x_1, x_2, ..., x_n) = 0,$$

$$\vdots$$

$$f_n(x_1, x_2, ..., x_n) = 0,$$

has a solution at $\mathbf{x} = (x_1, x_2, ..., x_n)^t$ precisely when the function g defined by

$$g(x_1, x_2,...,x_n) = \sum_{i=1}^n [f_i(x_1, x_2,...,x_n)]^2$$

has the minimal value zero.

The method of Steepest Descent for finding a local minimum for an arbitrary function g from \mathbf{R}^n into \mathbf{R} can be intuitively described as follows:

- i. Evaluate *g* at an initial approximation $\mathbf{x}^{(0)} = (x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})^t$;
- ii. Determine a direction from $\mathbf{x}^{(0)}$ that results in a decrease in the value of g;
- iii. Move an appropriate distance in this direction and call the new vector $\mathbf{x}^{(1)}$;
- iv. Repeat steps i through iii with $\mathbf{x}^{(0)}$ by $\mathbf{x}^{(1)}$.

An appropriate choice for $x^{(1)}$ is

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)}),$$
 for some constant $\alpha > 0$.

To determine an appropriate choice of α , we consider the single-variable function

$$h(\alpha) = g(\mathbf{x}^{(0)} - \alpha \nabla g(\mathbf{x}^{(0)}).$$

The value of α that minimize $h(\alpha)$ is what we need.

References:

【1】 R. L. Burden and J. D. Faires, *Numerical Analysis*, PWS, Boston, 1993.