Chapter 5 

 

Solving Initial-Value Problem for ODE

 

Initial value problem

1.        Single step methods

 

Runge-Kutta methods

(1)    Euler’s method

,

, for each

(2)    Midpoint method

,

, for each

(3)    Modified Euler method

,

, for each

(4)    Heun’s method

,

, for each

(5)    Classic Runge-Kutta method

 for each

(6)    Runge-Kutta Fehlberg method

This technique consists of using a Runge-Kutta method with local truncation error of order five,

,

to estimate the local error in a Runge-Kutta method of order four,

,

where

,

,

,

,

,

.

An advantage to this method is that only six evaluations of  are required per step.

 

2.        Linear multistep methods

 

Adams-Bashforth methods

(1)    One-step: Euler’s method.

(2)    Two-step:

,

, for each

(3)    Three-step:

,

, for each

(4)    Four-step:

,

for each

 

Adams-Moulton methods

(1)    One-step: Trapezoidal method,

,

, for each

(2)    Two-step:

,

, for each

(3)    Three-step:

,

, for each

 

Adams Fourth-Order Predictor-Corrector

,

.

 

Adams Variable-Step-Size Fourth-Order Predictor-Corrector

,

,

with an estimate of the local truncation error of the corrector step:

,

followed by a process of choosing  and a criterion of changing  when necessary. A change in step size for a multistep method is more costly in terms of function evaluations than for a one-step method, since new equally spaced starting values must be computed. So we tend to do this conservatively.

Milne’s method

.

Simpson’s method

.

Milne-Simpson Predictor-Corrector

,

.

Note: However, Milne, Simpson, Milne-Simpson Predictor-Corrector methods are all inherently A-unstable and therefore are of limited use.

      

BDFBackward Differential Formula):

(1)    One-step: implicit Euler’s method,

,

.

(2)    Two-step:

,

.

(3)    Three-step:

,

.

(4)    Four-step:

.

(5)    Five-step:

,

(6)    Six-step:

,

 

3.       MATLAB ODE suite

Non-Stiffode23, ode45, ode113.

Stiffode15s, ode23s.

For details read 2.

 

 

References:

【1】         R. L. Burden and J. D. Faires, Numerical Analysis, PWS, Boston, 1993.

【2】         L. F. Shampine and M. W. Reichelt, “The Matlab ODE Suite,” Siam Journal on Scientific Computing, Volume 18, Number 1, pp1-22, 1997.